Code: 20CS3501

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

SOFTWARE ENGINEERING (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks	
	UNIT-I					
1	a)	Discuss the impact of software myths in	L2	CO1	7 M	
		software development on project success				
		and team dynamics.				
	b)	Explain the key principles and practices of	L3	CO2	7 M	
		the Agile process model in software				
		development.				
	OR					
2	a)	Explain about unified process models.	L2	CO1	7 M	
	b)	Illustrate the changing nature of the	L3	CO2	7 M	
		software in detail.				
UNIT-II						
3	a)	Discuss some of the problems that occur	L2	CO1	7 M	
		when requirements must be elicited from				
		three or four different customers.				

	b)	Why is it that many software developers	L3	CO2	7 M		
		don't pay enough attention to requirements					
		engineering? Are there ever circumstances					
		where you can skip it?					
	OR						
4	a)	Describe the process of negotiating	L2	CO2	5 M		
		requirements in software development. Why					
		is it important for stakeholders to be					
		actively involved in this process.					
	b)	Demonstrate the concept of Scenario-Based	L3	CO2	9 M		
		Modeling in the context of requirements					
		analysis. How does this approach help in					
		understanding and defining system					
		requirements more effectively.					
	1	UNIT-III					
5	a)	UNIT-III Discuss the key design concepts in Design	L3	CO4	7 M		
5	a)		L3	CO4	7 M		
5	a)	Discuss the key design concepts in Design	L3	CO4	7 M		
5	a)	Discuss the key design concepts in Design Engineering and their significance in the	L3	CO4	7 M		
5	a)	Discuss the key design concepts in Design Engineering and their significance in the software development process. Provide		CO4	7 M		
5	a)	Discuss the key design concepts in Design Engineering and their significance in the software development process. Provide examples to illustrate how these design		CO4	7 M		
5	a)	Discuss the key design concepts in Design Engineering and their significance in the software development process. Provide examples to illustrate how these design concepts can be applied in real-world		CO4	7 M		
5	a)	Discuss the key design concepts in Design Engineering and their significance in the software development process. Provide examples to illustrate how these design concepts can be applied in real-world software projects to enhance		CO4	7 M		
5	a) b)	Discuss the key design concepts in Design Engineering and their significance in the software development process. Provide examples to illustrate how these design concepts can be applied in real-world software projects to enhance maintainability, scalability and		CO4	7 M		
5		Discuss the key design concepts in Design Engineering and their significance in the software development process. Provide examples to illustrate how these design concepts can be applied in real-world software projects to enhance maintainability, scalability and performance.					
5		Discuss the key design concepts in Design Engineering and their significance in the software development process. Provide examples to illustrate how these design concepts can be applied in real-world software projects to enhance maintainability, scalability and performance. Explain the importance of software					
5		Discuss the key design concepts in Design Engineering and their significance in the software development process. Provide examples to illustrate how these design concepts can be applied in real-world software projects to enhance maintainability, scalability and performance. Explain the importance of software architecture in the architectural design phase					

		OR					
6	a)	Discuss the relationship between agility and	L2	CO4	7 M		
		software architecture in modern software					
		development. How can agile practices be					
		integrated with architectural design to					
		ensure both flexibility and stability in					
		software projects.					
	b)	Interpret the principles of data-centered	L3	CO2	7 M		
		design in the context of design engineering.					
		Discuss how end-users involving in the					
		design process impacts the effectiveness and					
		usability of engineering solutions. Provide					
		examples of data-centered design					
		techniques.					
		UNIT-IV					
7	a)	Discuss the different types of validation	L2	CO4	7 M		
		testing used in software development,					
		including alpha testing, beta testing.					
	b)	Analyze the concept of white-box testing in	L4	CO4	7 M		
		software development. Discuss the					
		principles and objectives of white-box					
		testing.					
	OR						
8	a)	Using your own words, describe the	L3	CO2	7 M		
		difference between verification and					
		validation. Do both make use of test-case					
		design methods and testing strategies?					

	b)	Discuss the role of debugging in software	L2	CO4	7 M		
		testing and its importance in the software					
		development lifecycle.					
	•			1			
	UNIT-V						
9	a)	Compare and contrast reactive and proactive	L4	CO3	7 M		
		risk management strategies in the context of					
		project management and design					
		engineering.					
	b)	Discuss the processes of risk mitigation,	L2	CO3	7 M		
		monitoring, and management within the					
		framework of project management and					
		design engineering.					
OR							
10	a)	Describe and describe the key elements of	L2	CO3	7 M		
		Software Quality Assurance (SQA) in the					
		context of software development. Discuss					
		the roles and importance of each element.					
	b)	Explain how ISO 9000 quality standards	L4	CO3	7 M		
		useful in Software Development.					